THE EVOLUTION AND IMPROVEMENT OF THE "ARM " ARCHITECTURE
(The ARM Architecture (Version 6 JARMS.)

Abstract:

A microprocessar’s architecture defines the instruction set and programmer's model for any
rocessor that will be based on that architecture. Different processor implementations may be
built o comply with the architecture. Each processor may vary in performance and features,
and be optimized to target different applications. Future processors, based on the new ARMv6
architecture will provide developers of embedded systems with higher levels of system
performance, whilst maintaining excellent power and area efficiency.

The introduction of the ARMwv6 architecture brings a new set of features and a
performance leap that will meet the needs of ARMs partners as they design
nextgenerationproducts across a range of target markets. ARMv6 consolidates the
developments in ARMvS, and provides 100% backwards compatibility. It also adds significant
enhancements for next-generation applications.

New multimedia support provides 4x-processing improvements in some media
applications. The new VMSA provides faster context switches enhancing performance of
platform processors hosting complex operating systems. Improved multiprocessor support
eases development and enhances the performance of systems based on multiple ARM cores,
or ARM plus DSP core configurations.

Keywords: ARM, VMSA,DSP,MULTIMEDIA

Conclusion:

Functionality is growing dramatically as computing and communications continue to
converge in many consumer products. Increasingly, consumers expect features such as
advanced user interfaces, multimedia capability and improved productquality. ARMvE will
enable more efficient support for all of these new features andtechnologies across a number of
market segments. A number of specific market drivers for ARMv6 have been identified. ARMvE
will benefit developers targeting wireless, netwaorking, automotive and consumer entertainment
markets.

1. Introduction:

(The Evolution Of The ARM Architecture)

The ARM architecture has evolved steadily to respond to the changing needs of ARM's
partners, and of the design community in general. At each major revision of the ARM
architecture, significant features have been added. Between major architecture visions, new
features have been included as variants on the architectures. The key letters appended to the
core names indicate specific architecture enhancements within each implementation, V3
introduced 32-hit addressing, and architecture variants:

T - Thumb state: 16-bit instruction execution.

M - long multiply support (32 x 32 => 64 or 32 x 32 + 64 => 64). This

feature became standard in architecture V4 onwards.

_ V4 added halfword load and store.

. Vb improved ARM and Thumb interworking, count leading-zeroes (CLZ)

instruction, and architecture variants:

E - enhanced DSP instructions including saturated arithmetic operations

and 16-bit multiply operations

J - support for new Java state, offering hardware and optimized software

acceleration of bytecode execution.

All of the TEJ enhancements above become part of the new ARMvE architecture
specification.

In order to maintain backwards compatibility, ARMvE also includes ARMvS compliantmemory
management and exception handling. This enables the significant third-partydeveloper
community to exploit existing development effort, and supports the reuse ofexisting software
and design experience.

The introduction of a new architecture does not replace existing architectures, or make them
redundant. Where the provisions of ARMv4 or ARMv5 mest market needs, new cores and
derivative products will confinue to be based on these architectures, whilst tracking technology
and process trends. For example, the ARM7TDMI core based on the VAT architecture is still
being ‘designed-in’ to many new products, where a performance level of 100MIPS or so is
adequate. Processors based on the ARMvb architecture continue in development. The ARM
architecture will of course continue to evalve with appropriate enhancements in the future.

ARMYG

xscals™ ARM1OZIE
ARMvS

artfoza 0 aRf@TisES
ARMIE ARM1DES

ARMTTCIN BRMTZOT
va)
=TrEngaRm APHazoT

1924 1995 1e98 zooo Fualid 2004 2006
Figure 1. ARM Architecture Revisions

2 Driving Architecture Development:

Next generation architectures have been driven by the needs of emerging products and
evolving markets. The key design constraints are predictable. The function, performance,
speed, power, area and cost parameters must be balanced to meet the requirements of each
application. ARMv6 offers better ways of optimizing these constraints across a number of
vertical market segments. Delivering leading performance/power (MIPS/Watt) has been
fundamental to ARM's success in the past, and will continue to be a critical benchmark for

future applications.
3.Key Armv6 Improvements:
In developing the ARMvE architecture, effort has been focused on five key areas:
i)Memory Management:
System design and performance is heavily affected by the way that memory is managed. The
memory management architectural enhancements improve the overall pracessor performance
significantly - especially for platform-type applications where operating systems need to
manage frequent task changes. With the changes in ARMv6, average instruction fetch and
data latency is greatly reduced; the processor has to spend less time waiting for instructions or
data cache misses to be loaded. The memory management improvements will provide a boost
in overall system performance by as much as 30%. In addition, the memory management
enhancements will enable more efficient bus usage. Less bus activity will yield significant
povrer savings as a result of reduced memory access.
ii)Multiprocessing:
Application convergence is driving system implementations towards the need for
multiprocessor systems. Wireless platforms, especially for 2.5G and 3G, are typical
applications that demand integration between ARM processors, ARM and D SPs, or other
application accelerators. Multiprocessor systems share data efficiently by sharing memory.
New ARMvE capabilities in data sharing and synchronization will make it easier to implement
multiprocessor systems, as well as improving their performance. New instructions enable more
complex synchronization schemes, greatly improving system efficiency.
ili)Multimedia Support:
Single Instruction Multiple Data {SIMD) capahiliies enable more efficient software
implementation of high-performance media applications such as audio and video encoders.
Qver sixty SIMD instructions are added to the ARMvE Instruction Set
Architecture (ISA). Adding the SIMD instructions will provide performance improvements of
between 2x and 4x, depending on the multimedia application. The SIMD capabilities will enable
developers to implement high-end features such as video codecs, speaker-independent voice
recognition and 3D graphics, especially relevant for next generation wireless applications.
iv)Data Handling :
A system’s endianism refers to the way data is referenced and stored in a processor’s memory.
With increasing system on a chip (SoC) integration, a single chip is more likely to contain little-
endian OS5 environments and interfaces (such as USB, PCI), but with bigendian data (TCP/P
packets, MPEG streams). With ARMv6, support for mixed-endian systems has been improved.
As a result, handling data in mixed-endian systems under ARMv6 is far more efficient.
Unaligned data is data that is not aligned to its natural size boundary. For example, within DSP
applications there is sometimes a requirement to treat words with half-word data alignment. For
a processor to handle this situation efficiently requires that it be able to load a word aligned to
any half-word boundary. Current versions of the architecture require a number of instructions to
manage unaligned data. ARMvE compliant architectures will manage unaligned data more
efficiently in hardware. In algorithms that rely heavily on DSP operations with unaligned data,
ARMvE implementations will have a performance advantage and may also benefit from
reduced code size. Unaligned support also makes it more efficient for ARM to emulate other
processors, such as Motorola’s 68000 family. Similar to recent ARMv5 implementations such
as ARM10 and XScale1™, ARMvG is based on a 32-hit processor. ARMvE will support
implementations based on bus widths of 64-bits and above - ARM10 and XScale support 64-hit
buses today. This provides bus throughput equivalent to, or even better than a 64-bit machine,
but without the power and area overhead of a full 64-hit CPU.
v)Exceptions and Interrupts:
For implementations targeted at real-time systems, efficient handling of interrupts can be
critical.

Examples include systems such as hard disk controllers, and engine management 1
XScale is a registered trademark of Intel Corporation. applications, where the consequences

can be severe if a critical interrupt does not get serviced in time. More efficient handling of
exception and interrupt conditions also improve overall system performance. This is especially
important in reducing system latency. In ARMvE, new instructions have heen added to the ISA

to improve the implementation of interrupts and exceptions. These provide the ability to

efficiently nest exception handling onto a different privileged mode Each of these architectural
advances is described in more detail in the following sections.

4.Compatibility:

ARMv6 maintains 100% backward compatibility at the binary level for operating systems and

applications. The ARMv6 architecture requires that all Thumb and ‘E’ instructions be

implemented for backwards compatibility with AR Mv5.
Some of the newly infroduced ARMv6 instructions also have Thumb equivalents - for example

the new ‘REV* instructions. The BXJ instruction is also a requirement within ARMv6 for

consistent Java support - regardless of whether Jazelle technology is implemented or not.

5.Improved Memory Management:

Memory management is primarily concerned with two issues. First, the translation of
virtual addresses into physical addresses within a system. Second, ensuring appropriate levels
of protection between different processes and tasks.
The ARM architecture is a load-store architecture, where the ARM care instructions canonly
operate on data in registers that form part of the core. Load and store instructions areused to

transfer data to and from this register file.

A multi-level memory system is part of normal system design hierarchy. Closer
coupledmemory systems tend to run faster, with level 1 memory systems ideally having no

waitstates. In practical terms, this limits the size of memories that can be supported at

coreclock speeds. Many high performance systems are now supporting additional (larger)
L2caches with some wait states, but less latency than if the memory was located off-chip.

L3 cache may be provided as fast off-chip SRAM, with "normal' DRAM a level behindthat ARM
firstintroduced cores (e.g. ARM/TDMI), then developed and offered cached coreswith MMU's

(e.g. ARM720/920)

ARMv6 is a logical progression on this - providing acomplete definition of the L1 memory
system, and to a lesser extent how memory levelsbeyond this need to behave for overall

system correctness.

Virtual
Address

ARM core

R15

R0

Adddress
translation

P15 configuration

= control

Instruction
Prefatch

Store

Lewal 1
Cachais)

Tightly
Coupled
Mamory

TGI‘-\.ﬂtE]

Physical Address

Lewal 2

Cachals)

DRI

SRAM

Flash

RCOM

Figure 2. ARMvE Memory Model

Additional
Processars

L1 memory will run synchronized to the core. Where different clock domains are
introduced into a design, memary synchronization becomes dependent on the
implementation.

6 Arm Virtual Memory System Architecture:

The ARM Virtual Memory System Architecture vb (VMSAV6) fully specifies the
new Level 1 cache system - that most tightly coupled to the processor. The VMSA also
specifies a Tightly-Coupled Memory {TCM) and DMA system. The architecture permits a range
of implementations of these systems, with software-visible configuration registers to allow
identification of the resources that exist. V& supports hierarchy and memory ordering rules to
ensure system correctness for additional levels of cache in both single processor and
multiprocessor systems. Memory ordering rules define the architecture, without constraining
the implementation .Version & now supports physically tagged caches, reducing software
overhead on context switches. This can save up to 20% of the processor utilization by
eliminating the need to perform cache flushing by the 0S.
i)ARM v6 L1 Cache:

The L1 cache is architected to reduce the requirement for cache clean and invalidation on a
context switch. The cache may be organized as a Harvard system with separate

instruction and data caches, or as a single unified von Neumann cache. The TCMis a
physically-addressed area of scratchpad memory, which is implemented alongside the
L1 cache. Similarly, the TCM can be organized as a Harvard or von Neumann system.
The 1.1 DMA subsystem is designed to allow background transfers to and from the
TCM.

Page Table Formats:
Page table formats have been revised in ARMv6. Figure 3 illustrates the new first level page
table format.

SBZ njo

Coarss pags lable page address P | Comain SEZ o1

A

S=ction bass address SEE [nG| S|P |TEX| AP | P | Comain [#N|C 2| 1] D
X

Reaszarved 111

Figure % ARMvE First Lewel Pags Table Format

The XP bit in Coprocessor 15 is used to enable this format, otherwise an ARMvS legacy mode
is invoked for backwards compatibility.
New features include:

_lan execute never bit (XN)

la *not Global” { nG) bit for address matching
Application Space Identifier - or ASID - support is another key feature in this area. When the
nG-hit is set, address translation uses the virtual address and ASID for translation matching.
This provides a significant saving in software overhead on context switches, avoiding the need
to flush on-chip translation buffers in most cases. The result is improved performance. The
architecture also supports its use in task- aware debugging.
The ASID forms part of a process |D that can be used in task aware debugging.
Type extension, shared, and access permission bits are used to provide all the attributes
necessary for the ARMv6 memory model. A P-bit, which is compatible with the mechanism
already available on Intel's XScaleTM product, has been added for memory protection.
Multiprocessing:

While many ARM processors today are used in isolation, or with simple communications links
to another resource with its own memory, there are increasing requirements for unified memary
models, and closer coupling of processors in general. Systems consisting of multiple
processors - either multiple ARM processors or a mixture of ARMs and DSPs, are becoming
more common. Improvements to the ARMv6 memory management unit (MMU) are important in
ensuring that processors get predictable and consistent (coherent) views of memory when it is
shared between multiple processors Improvements include defining the levell memory system,
and the memory order model

- how loads and stores to memory relate to each cther.

il)ARMvS5 ARNv6:

FIQ2Zhandler. FIQs are now re-enabled, with original R2, R3, R14, SPSR on stack. Includes
code to stack any more registers required, process the interrupt and unstack extra registers.

ARNMvE | AR MG
FlZ2Zhandler. FICs are now re-snabled, with original R2, R2, R14, SPER an stack. Includes code
Iz stack any mare registers required, prosess the int=rrupt and unstack extra registers.

STMIA R12 {RO-R3} SUB R4, R4, 54

MV RO, LR SRSFD R13_abt!

MRS R1, SPSR CPSIE f #x1B ;= Abort mode
ADD R2,R12 #8 STMFD R12!, {R2 R3}

MRS R3 CPSR

EBIC R2, R, #0ciF

ORR R3, R, #0x1B ;= Akort mode Mo,
MSR CPER_c, R3

STMFD R13! {ROR1}

LOMIA R2, {RO.R1}

STMFD R13!, {ROR1

LOMDE R2,{ROR1}L

BIC R, R3,=0xdD ; =F bit

MSR CPER_c, R3

Exil code including the LORSSTR instructions nesded to acknowledge the W C

ADR R2, #Caddress LOMFD R13!, Rz R3G

MRS R3, CPSR ADR R14, &/ Caddress
ORR R3 R, #0x40 ;=F hit CPSID f

MER CPER_c, R3 ETR RO, [R14,2AckFinished]
STR RO, [R2#AckFinishead] RFEFD R12!

LDR R, [R13#12] ; Criginal PSR value
MER SPSR_faxc, R14

LOMFD R13! {R2 F2 R4}

ADD R13, R13, 34

SUBS PC, R14,=4

Approximate cycles: 35 Approximate cycles: 11

Table 1a. Efficient code handling in ARMvE

Entry code:
add Rz, R3, R14 and SPSR to the 1arget (ABCDRT) stack
switch mods == ABRORT

el code:
recover Rz and R3 context
return from handler { pop values from the ABCRT stack)
LR == PO
-"SPSR" == CPSR

Tabkle 1k, Entry/Exit code handling in ARMwE

For ARMvS the FIQs are disabled for some time at the start of the lower-priority FIQs. The
worst-case interrupt latency for the FIQ1 interrupt occurs if a lower- rionty FIQ2 has just fetched
its handler address, and is approximately:

.13 cycles for the pipeline refill after the LDR PCinstruction fetches the handler
address

[+ 24 cycles to get to and execute the MSR instruction that re-enables FIQs

[+ 3 cycles to re-enter the FIQ exception

I+ 5 cycles for the LDR PC instruction at FIQhandler

_lor about 35 cycles.
For ARMv6, the worst-case interrupt latency for a FIQ1 now occurs if the FIQ1 occurs during a

FIQZ s interrupt entry sequence, just after it disables FIQs, and is
approximately:
.13 cycles for the pipeline refill for the FIQ2's exception entry sequence
I+ 5 cycles to get to and execute the CPSIE instruction that re-enables FIQs
[+ 3 cycles to re-enter the FIQ exception
_Tor about 11 cycles.
The underlying mechanism illustrated can be used from any privileged mode, to stack
and swap state to a different privileged mode, then return from this mode using the stack
values.

Data Handling:

Version 6 has introduced two features for mixed-endian support:

E-bit:

A state bit (E-bit) is set and cleared under program control using the SETEND
instruction. The E-bit defines which endian to load and store data. Figure 4 illustrates the
functionality associated with the E-bit for a word load or store operation.

Diata bytes in mamory

Byt 2 |4
Byle 2
Btz 1 jf
»{Ext= 0
il i} h| L L L 0
| Bvi=3] Byte 2| Bute 1 | Byte 0] |BseofBste 1] Bste 2| Bite |
ARM | _ ARM
reqister ncramsn ting rass reaistar
. byte O == byte 3 =
CPSRE-bit= 0 CPSR E-tit = 1

Figure 4. Endian sup pert - Word Load/Store with E-bit

This mechanism enables efficient dynamic data load/store for system designers who
know they need to access data structures in the opposite endianness to their
OS/environment. Note that the address of each data byte is fixed in memory. However, the
byte lane in a register is different
il)REY Instructions:
Three byte reverse instructions are available in both ARM and Thumb states. The byte
reverse (REV) instructions can be used to improve byte-swap routines present in
many code bases today typically replacing four instructions with a single instruction (Figure 5)
New instructions (ARM and Thumb variants)
{IREV - byte reverse a word
_IREV16 - byte reverse packed (2 x) halfwords
.IREVSH - byte reverse + signh extend halfword

REV{=<mond=} Rd, Rm REW16{=cond=} Rd, Rm REVSH{=cond=} Rd, Rm

Rm Rm
M et | 18 B 1] M it | 18 B 1]
EEEAERED | ea]Bz2|B1]en]
B0 [B1 [B2 [B2 Bz [B2 [E0 [B1
Rd Rd Rd

Figure 5. ARMwE B yte Reverse Instructions

ARMv6 provides better support for the sum of absolute differences calculation, with the
inclusion of the USADS (sum of differences) and USADAS (sum of differences and accumulate)
instructions. These are particularly useful for video encoding and motion estimation
applications.

Table 3 shows the relative performance of the sum of absolute differences. The

comparison with version 5TE relates to a software implementation in ARM registers.

This can also he accelerated with the MOVE coprocessor

